
Amarino: A Toolkit for the Rapid Prototyping of Mobile
Ubiquitous Computing

Bonifaz Kaufmann and Leah Buechley
MIT Media Lab

High-Low Tech Group
Cambridge, MA 02139, USA

bonifaz@mit.edu, leah@media.mit.edu

ABSTRACT

Ubicomp applications increasingly involve smart phones that
control or communicate with embedded systems. Compelling
examples in this space include tangible interfaces, environmental
sensor networks, game controllers and automated homes. Across
research, design, and hobbyist communities there is clearly a
desire to build applications that involve combinations of mobile
and non-mobile technologies. However, constructing these
applications is a laborious process that requires considerable
breadth and depth of expertise in programming, electronics,
industrial and interaction design.

Amarino is a toolkit that enables the rapid prototyping of such
applications by connecting the Android operating system to the
Arduino microcontroller platform. It consists of an Android
application, an Arduino library, and a collection of documentation
and examples. This suite of tools allows users to: 1) access
Android events (ie: compass orientation, accelerometer data, and
text messages received) and send them to Arduino
microcontrollers without doing any Android programming, and 2)
quickly develop Android applications that receive data (ie:
environmental sensor data) from (and send data to) Arduino
microcontrollers. This paper introduces Amarino and presents the
results of a preliminary user study.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:
User Interfaces – Haptic I/O, Input devices and strategies,
Prototyping.

General Terms
Design, Human Factors

Keywords
Mobile Devices, Android, Arduino, Toolkit, Microcontroller,
Interfaces, Communication, Tangible, Mobile Computing, Smart
phones, Mobile Phones, Wearables

1. INTRODUCTION
When Weisner introduced “ubiquitous computing”, he motivated
his discussion by articulating problems with current computing
paradigms. “Even the most powerful notebook computer, with
access to a worldwide information network, still focuses attention

on a single box” [18]. Strikingly, this criticism can be applied to
most of today’s technology, particularly smart phones. Smart
phone “boxes” engross and isolate us with their power to capture
our attention, a problem that has negative social and physical
consequences. Ambient and tangible interfaces can solve many
of these problems—they can leverage a wide range of our existing
physical skills and can convey information without demanding all
of our visual and cognitive attention [12]. But, while tangibles
have many advantages, they aren’t as common as traditional GUI
systems in part because they are difficult to design and construct
[16, 17]. Ambient interfaces to smart phones are especially rare,
perhaps because they are particularly challenging to build [2].

Amarino aims to facilitate the development of tangible interfaces
to smart phones by eliminating several of the developments steps
that are required to build them. In particular, Amarino allows
Android-based mobile phones to communicate seamlessly with
Arduino-based microcontrollers. It also allows tangible
developers who would like to employ phone-based sensing in
their projects to do so without engaging in any mobile device
programming. The toolkit consists of two components, an
Android [3] application, which runs on a mobile device, and a
software library for the Arduino [5], which runs on a tangible
device. Central to each of these is a communication protocol that
allows a developer to focus on the behavior of his or her project
instead of low level communication details. The current
implementation takes advantage of most phones’ built in
Bluetooth radios and assumes that communication takes place
over Bluetooth.

Before we describe the system in detail, we will describe an
example that highlights Amarino’s most important features.
Figure 1 shows a picture of this project—an RGB LED lamp
(similar to the Ambient Orb [1]) that can be controlled by a smart
phone. To change the color of the lamp, the phone is placed on a
flat surface and rotated—the lamp’s color changes in response to
changes in the phone’s compass heading.

The process we used to construct the lamp illuminates the
affordances and benefits of Amarino. In the first step, the
Arduino that controls the lamp was programmed to receive data
from Amarino. In this stage, we specified the type of information
that would be sent by the phone—compass data—and
programmed the Arduino to translate this data into lamp color.

Once the Arduino was programmed, we could control the lamp
directly from the Android Amarino application. The Amarino
interface allows users to choose from a list of built-in Android Copyright is held by the author/owner(s).

MobileHCI’10, September 7–10, 2010, Lisbon, Portugal.
ACM 978-1-60558-835-3/10/09.

events (including accelerometer readings, compass readings, and
call received events) to send to Arduinos. We selected compass
events from the list and then also used the Amarino interface to
discover the Bluetooth enabled lamp and connect to it. Once we
connected, compass data was continually sent from the phone to
the lamp and we were able to use the phone as a remote control
color mixer.

Figure 1: A multicolor lamp controlled by an Android phone.

What is noteworthy about this example is that we did not need to
do any Android programming to build and control the lamp. Only
the Arduino was programmed. Amarino allowed us to use the
phone as an input device without doing any mobile development.
Amarino has many additional features, but this example
highlights what we believe is its most important contribution—
enabling developers to very quickly and easily create tangibles
that are controlled by mobile devices.

2. RELATED RESEARCH
Though our introduction focused on the difficulties of developing
projects that span the mobile and tangible domains, several
researchers have built compelling projects at this intersection.
We take inspiration from this previous work, which both
illustrates the potential of the area and illuminates the limitations
of current development tools.

Among the interesting mobile-tangible projects are systems that
involve wearables, games, and environmental sensing. For
example, WeWrite [20]—which employs mobile phones and the
LilyPad Arduino [7]—enables users to send text messages to a T-
shirt that then displays them on a built-in LED display. Another
wearable-based project, called united-pulse [19], uses electronic
rings, heart rate monitors and smart phones to communicate heart
rate across distance. The rings communicate with the phone and
monitors to enable two people to feel each other’s pulses
remotely. A less poetic, but perhaps more useful application, eye-
q consists of a small display mounted on the inside of a pair of
glasses that delivers peripheral visual cues to its wearer about
phone events [8]. Other applications include games that motivate
their players to be physically active [9], and environmental sensor
networks which rely on mobile and tangible nodes that
communicate with one another (cf MobSens [13]) .

In the realm of toolkits, there are many systems that aim to make
working with hardware easier. In addition to Arduino [5], the

best examples include Phidgets [10], D.Tools [11], Basic Stamps
[6], and Lego Mindstorms [14]. Similarly, there are several tools
that enable developers to write applications for mobile phones—
Apple’s iPhone development kit [4] being a particularly nice
example. However, Amarino is the first fully realized kit that
brings these worlds together.

3. APPROACH
After surveying related work and reflecting on our own
experiences, we identified three different kinds of expertise that
are required to produce smart phone/microcontroller projects:

 Developing smart phone applications

 Implementing communication protocols

 Building tangible devices

Each of these tasks requires different skills including application
programming, microcontroller programming, electrical
engineering, industrial design, and networking. Most developers,
and especially novices, have experience in one or two of these
domains, but rarely in all of them. We realized that most of the
work required to implement a particular project is application
dependent and therefore difficult to simplify or eliminate.
However, it was clear that we could develop a standardized
communication protocol. We also observed that many projects,
like eye-q [8], were using tangibles as ambient output devices for
simple phone events and felt that this presented another
compelling opportunity for standardization. Amarino was thus
designed to eliminate smart phone development and
communication protocol development from the work process as
much as possible; our goal was to enable developers to focus their
attention on building the tangible devices.

To achieve our goals we chose to leverage two powerful existing
technologies—the Arduino microcontroller platform and the
Android mobile operating system. Both of these are mature
systems with active user communities. Both are also open source
and well documented—attributes that made them easy to access
and customize for our purposes.

We wanted our application to be as useful as possible and
accessible to a broad audience. In approaching this challenge, we
were particularly inspired by the Arduino project, which has a
large community following that includes both novice and expert
developers. The Arduino community has become a vibrant,
creative and largely self-supporting entity with documentation,
hardware extensions, software libraries, and curricula increasingly
produced by community members. Motivated by this example, we
identified three additional goals for our project. To facilitate
adoption by a wide range of users and ongoing community
development Amarino should be:

 Easy to use (to support novice developers)

 Extendible (to support expert developers)

 Open source (to support community extension)

Throughout our development process we were guided by these
aims and philosophies, which we will highlight as we describe our
system and user experiences.

4. AMARINO
As illustrated in Figure 2, Amarino is a system that allows
Android based smart phones to communicate with Arduino
microcontrollers. It consists of two components: an Android
application called “Amarino” and an Arduino library called
“MeetAndroid”.

Figure 2: Amarino

Amarino, the Android application, sends event data from phones
to Arduinos. It consists of a graphical user interface that allows
users to: select built-in phone events to send to specific Arduinos;
create collections of events that are associated with specific
Arduinos; monitor data being sent from the phone; and manage
Bluetooth connections. In its more advanced mode, Amarino can
also receive data and pass it along to other Android applications.

On the Arduino side, the MeetAndroid library enables developers
to associate Arduino functions with Android events and extract
data attached to events. For projects that require two-way
communication, MeetAndroid also provides functions to send
data from microcontrollers to phones.

The remainder of this section will discuss Amarino and
MeetAndroid in detail.

4.1 Android Interface
When a user starts the Amarino application, he is welcomed by a
main screen like the one shown in Figure 3. This screen is the
control center for managing all of the events, connections, and
data flows being handled by Amarino. As can be seen in the
image, it is broken into four quadrants:

 Bluetooth Manager

 Monitoring

 Settings

 Event Manager

Each of the four quadrants corresponds to one of Amarino’s core
functionalities. (In addition to these four areas there is a
connect/disconnect button in the middle of the screen whose
functionality we will describe shortly.)

Figure 3:
Main screen

4.1.1 Bluetooth Manager
Clicking on the Bluetooth Manager quadrant opens up a window
(Figure 4) that enables the user to manage Bluetooth devices—
which, for our purposes, usually correspond to Arduinos. Within
this module, users can discover nearby Bluetooth devices and pair
with them. This is a process that must be undertaken once for
each Bluetooth enabled Arduino before any communication can
happen between it and the phone.

Figure 4:
Bluetooth
Manager

Since Bluetooth is a peer-to-peer communication protocol,
Amarino only communicates with one Bluetooth device (one
Arduino) at a time. From now on we will refer to the Arduino
that is currently paired with the phone as the active Arduino.
Amarino also remembers which device it was most recently
connected to, and clicking the connect/disconnect button on the
main screen (Figure 3) will cause the application to connect to or
disconnect from this device.

4.1.2 Monitoring
Clicking on the monitoring quadrant opens a window (Figure 5)
that displays the streams of data being sent and received by
Amarino. This window also allows users to send arbitrary
characters to the active Arduino.

Figure 5:
Monitoring

4.1.3 Settings
The settings window allows the user to customize the toolkit’s
behavior. Here users can change the rate at which event data is
sent and choose whether phone to Arduino Bluetooth connections
should be permanent (for high data flow applications) or
intermittent (for occasional event sending).

4.1.4 Event Manager
The Event Manager, shown in Figure 6, is the central component
of the Amarino interface. It allows users to create collections of
events that they wish to send to particular Arduinos. A collection
is a set of events with a user-defined name that is associated with
a specific Bluetooth device (Arduino). The active collection is
the collection associated with the last active device or the
collection that is explicitly set to be the active collection.

Figure 6: Left: the Event Manager showing the active
collection “home”. Right: the Create Collection window

To create a new collection of events, the user clicks on the Create
Collection button at which point she is prompted to enter a name
for her collection and an address of a Bluetooth device, as shown
in the right hand image of Figure 7. Once the user creates the
new collection, it becomes the active collection and she can use
the Add Event button to choose events for it.

When a user opens the Event Manager, she is presented with a
window like the one shown in the left side of Figure 6, which
shows information about the currently active collection including

its name—in this case, home—and the list of events in the
collection—which in this case includes Magnetic Field Sensor
and Battery Level. To add an event to the home collection, the
user clicks the Add Event button, which brings up a list of all
available Android events. All of the events that are included in
the Amarino distribution are shown in Table 1.

Table 1: List of all built-in events in Amarino

Other buttons within the Event Manager include the Delete
Collection button, which deletes the current collection, and the
Change Collection button, which allows the user to choose which
collection is active.

Users can also create custom events using the Custom Events
button. We will describe this functionality in more detail in
Section 4.4. Once created, custom events can be added to
collections in the same way as preinstalled events.

Event data that is sent from Amarino is structured so that it can be
easily identified and parsed by Arduinos. Each event type is
associated with a single alphanumeric character that uniquely
identifies the event. For example, the Battery Level event is
associated with the character ‘J’. Event data packages contain the
identifier character followed by the relevant event data. A
Battery Level event, for example, would consist of the character
‘J’ followed by a number from 0-100 that indicates the phone’s
current battery level.

4.2 Architecture

Amarino’s architecture, shown in Figure 7, has five components:
a Graphical User Interface (GUI), Background Service, Bluetooth
Handler, IntentEventMapper and Database. The Background
Service is at the heart of Amarino. It listens for sensor and phone
state information, generates events, sends events, and maintains
Bluetooth connections. The Bluetooth Handler implements low-
level access to the Bluetooth functions of the operating system.
The IntentEventMapper converts Android “intents” to Amarino
events. Finally, the database stores all of the collection, event,
and Bluetooth device history and the GUI makes all of this
functionality accessible to the user.

Figure 7: Architecture of the Android application

4.3 MeetAndroid Library
The second major component of the Amarino toolkit is the
Arduino library, MeetAndroid. This library provides a set of
functions for receiving Amarino events and sending data from
Arduinos to Amarino.

To receive data from Amarino, an Arduino programmer first uses
the registerFunction() library component to “register” functions in
his Arduino code. This determines which functions will be used
to parse specific Amarino events. To employ event data in an
Arduino program, the meetAndroid.receive() function is used to
check for incoming event data. This data is then examined and
passed to the appropriate registered function. To parse event data,
the MeetAndroid library provides additional helper functions that
can be employed in the user-written registered functions. For
example, the meetAndroid.getInt() function retrieves an integer
value from an event package. A listing of all MeetAndroid
functions is shown in Table 2.

The library also provides send() functions that allow the user to
send data to Amarino.

Table 2: The MeetAndroid library

The final important component of the library is a series of
example Arduino programs that demonstrate different Amarino

functionality. These examples include programs that illustrate
how to parse and use Android phone events (like ringing and
hang-up events) and sensor events (like compass and
accelerometer readings) as well as programs that employ all of the
helper functions shown in Table 2 and programs that show how
data can be sent from Arduinos to Android phones.

4.4 Using Amarino to Create Custom
Android Applications
Though the primary purpose of Amarino is to enable users to
prototype complete systems without doing any smart phone
programming, Amarino also provides assistance for Android
development. On the Android side, the Amarino application can
be run as a background service that listens for events generated by
any Android application and passes them on to Arduinos.

To make use of this functionality, a user would develop a custom
Android application that broadcasts event information to the
Android operating system via Android intents. Amarino can then
listen for this information; within the Amarino application, the
user would use the Custom Event Manager to create an event that
corresponds to the intent by supplying an event name, a
description, the name of the intent and information about the data
attached to the intent. Once the custom event has been created, it
is handled like a standard event, both within Amarino and by the
MeetAndroid library—it will appear in Amarino’s event list and
users can add it to any collections of events that will be sent to
Arduinos. Figure 8 shows a flow diagram that outlines the steps
in this process.

Figure 8: Sending data from a custom Android
application to Arduino via Amarino

In addition to receiving intents from Android applications and
turning them into events to send to Arduino, Amarino can also do
the inverse: receive data from Arduinos and broadcast this
information to other Android applications via intents. To
accomplish this task, a user would first create a custom Android
application for receiving/visualizing the Arduino data. Then she
would create an Amarino collection with the same name as this
application. Once Amarino is activated as a background service,
the connection to the Arduino is established, and the custom
application is run, Amarino passes along all received Arduino
data as intents to the custom Android application.

Amarino also provides a transparent way for custom Android
applications to connect to Arduinos. To initiate a connection, the
third-party Android application has to send a specific intent:
sendBroadcast (new Intent(“amarino.CONNECT”); This will
immediately start Amarino as a background process and Amarino
will begin trying to connect to the device associated with its
current active collection. The same mechanism can be used to
disconnect the phone from the Arduino upon quitting the custom
application.

In Section 5 we will discuss examples that demonstrate the full
range of functionality that Amarino facilitates.

4.5 Documentation
To introduce users to our toolkit we also developed a set of
tutorials and references to accompany it. All of this information
is published on the Amarino website. The website includes a
section that explains how to download and install Amarino, a
section that details all of the functionality of the Amarino Android
application, and a selection of in-depth tutorials that walk users
through specific application scenarios. In particular, there is a
tutorial that describes how to build the RGB LED lamp we
described in the introduction and a tutorial that details how to
develop an Android application that plots sensor data received
from Arduinos on phone screens. The website also includes links
to all of the source code for the project.

5. AMARINO EXAMPLES
We have constructed a number of examples that rely on Amarino
at our lab. We will describe three of them in this section. First,
we will return to the multicolor lamp application from the
introduction and discuss extensions of that project. Then we will
discuss two examples that involve wearables: CallMyShirt, which
highlights phone to Arduino communication and Workout, which
highlights Arduino to phone communication.

5.1 Multicolor lamp
The multicolor lamp example we introduced earlier consists of a
tricolor LED that is controlled by an Arduino. In the physical
lamp, the Arduino, the LED, and a battery are mounted inside a
custom lampshade we constructed from plywood and textile
composites. As we described earlier, the lamp is controlled by
rotating a phone. In the earlier example, we described how a user
could control the color of the lamp via Amarino. In this scenario,
though the user is able to control the lamp with a phone, there is
no information on the phone that indicates how this control works
or communicates the current state of the lamp.

We developed an extension to this basic example that consists of
a special Android application that enriches the interaction. It
provides feedback about the current state of the lamp and a subtle
indication of how the compass interface works via a round color
wheel like the one shown on the left in Figure 9. To indicate
color, the current color of the lamp is darkened—in Figure 9, the
lamp is an orange-ish red—and the circular color layout provides
an intuitive indication of what will happen when the phone is
rotated clockwise or counter clockwise. The lamp’s current color
and brightness are also written in text at the bottom of the
interface window.

Developing a custom Android application also allowed us to add
more complex interactions to our interface. For example, we
added functionality that allows a user to tap the screen to freeze
the lamp at a particular color. If a user tapped the screen on the
left of Figure 9, the lamp would freeze red and the user could then
move her phone around without affecting the color. A second tap
would unfreeze the color. An extended finger press to the color
screen opens up a new window, like the one shown on the right in
Figure 9 that allows the user to control the brightness of the lamp
instead of its color, again via phone rotation. Though we could
have theoretically implemented the same interactions with
Amarino, the chain of interactions would be very difficult to
follow without the graphical queues on the phone.

Figure 9: Multicolor lamp, custom Android interface.

To develop this example, we created custom events that were sent
from our custom application to Amarino—which runs as a
background service companion to our app—and then on to the
Arduino. Within Amarino we defined two custom events, one for
changing light intensity and one for changing color. On the
Arduino side, we wrote and registered functions to respond to
these events.

5.2 CallMyShirt
Our second example, CallMyShirt, uses Amarino to communicate
phone events to a wearable device. This example provides another
case study that involves no mobile phone application
development. The wearable, shown in Figure 11 is a shirt with 10
luminescent pads on its front.

Figure 10: CallMyShirt

These individually controllable pads are used to display
information about the phone’s current state. When the phone is
ringing, all of the pads blink on and off. If a call is accepted, the
lights rotate in a circle until the user hangs up. When the phone is
idle, the shirt generates random patterns. The shirt can also be
used as an ambient display for phone battery state. In this mode,
each pad corresponds to 10% of the current battery capacity.

The shirt was constructed from a LilyPad microcontroller and 10
LilyPad LEDs that were sewn into the shirt with conductive
thread. The microcontroller is connected to a Bluetooth shield,
which facilitates communication with the phone.

Figure 11: The inside of CallMyShirt with conductive traces
(top left), all LEDs light up (bottom left), testing all functions
before sewing remain parts on the shirt (middle) and the
corresponding event collection (right)

This example highlights a very important feature of Amarino that
we have not yet mentioned. The wearer of this shirt would likely
want to use other Android applications or would want to put the
phone in his pocket while the shirt was “running”. Amarino
supports this style of interaction. Once Amarino establishes a
connection to an Arduino, a user can close the Amarino
application. The connection is maintained and events are sent
through Amarino’s background process until the Arduino
connection is lost or some specific action is taken. This enables
Amarino to operate without interfering with regular phone
operation.

5.3 Workout
Our final example, “Workout”, was developed to help exercisers
keep track of their routines.

Figure 12: Left: the Armband. Right: the Workout interface.

It uses a motion sensing wearable and an Android application that
allows wearers to visualize and analyze their activity level. Our
wearable is a knitted armband, shown on the left in Figure 11 that
contains an embedded stretch sensor. The sensor was constructed
from a piezo resistive yarn knit into the fabric of the armband.
When placed over an elbow, the armband can reliably detect
when the elbow is bent. A LilyPad Arduino—again sewn into the
band with conductive thread—reads sensor data from the band
and relays it to a phone via Bluetooth.

The Android Workout application plots the raw sensor data it
receives, extracts a number-of-arm-bends count from this data,
and displays this count to the wearer. A snapshot of this
application in action is shown on the right in Figure 11. In this
example, Amarino is used to receive data from the arm band and
pass it along to the workout application.

It is worth (anecdotally) noting that we produced this complete
prototype, both the wearable and the application, in a few hours.
Amarino (and Arduino) allowed us to develop and demonstrate
our Workout proof of concept much more quickly than we would
have been able to without it.

6. EVALUATION
To evaluate our toolkit, we hosted a one day workshop for a
group of 13 engineering and design students, 10 male and 3
female. All were in their 20s or 30s. Our group included
undergraduate, masters, and PhD students. All students had some
previous programming experience. 12 had previous Arduino
programming experience and 5 had previous Android
programming experience.

Each student was given an Android phone, an Arduino board, and
access to a range of electronic components like LEDs and motors.
The workshop began with a short introduction to Arduino and
Android. Then the participants were asked to go independently
through one of our online tutorials. This tutorial explains how to
install all of the necessary software and establish the connection
between the phone and the Arduino. The end result of this tutorial
is an Amarino collection that sends a time tick event every 5
seconds and an Arduino-connected LED that blinks in response to
this event.

All students were able to complete the online tutorial successfully
within 45 minutes. As a second challenge, the students were asked
to experiment with Amarino’s inbuilt events. Most students
successfully used the compass or accelerometer events to change
the intensity of an LED.

The third challenge was to write a simple Android application.
We guided the students through developing an Android interface
with a single button that was used to switch an Arduino-connected
LED on and off.

After completing this exercise, students were allowed to build
their own applications. Two students produced particularly
interesting prototypes in this session. One student wrote a
program that activated the phone’s vibration motor whenever a
light sensor attached to the Arduino was covered with the hand.

The most compelling example however was from a student who
used the Android’s built-in speech recognition engine to build a
voice-activated light. This student wrote an Android application
that sent out an event message whenever a user said the word

“light”. His Arduino was programmed to toggle an LED each
time it received this message.

To evaluate the effectiveness of our toolkit and workshop, we
conducted a short survey. In this survey all respondents rated the
kit easy to use and the documentation helpful though several
asked for additional tutorials and examples. We have since
incorporated many of these suggestions into our documentation.
All respondents also said that they were planning to use the kit in
own projects. Though it is nearly impossible to draw any specific
conclusions from this preliminary data, for us the experience
verified the kits basic utility and usability and provided us with
promising avenues for future development.

7. CONCLUSION AND FUTURE WORK
We developed Amarino to empower developers to work easily
with more of the artifacts in our environments—from phones to
furniture to clothing. We focused on keeping our tools easy to
use so that they would be accessible to novices but also easily
extendible so that they would be useful for experts.

In our future work, we would like to provide users with access to
higher level events, like gestures [15][14] and spoken words for
example. We would like to add support for communication via
wireless LAN—this functionality could be particularly useful in
the home environment. We would also like to investigate a
location detection feature that would automatically activate
particular event collections based on current location. Finally, we
want to construct more prototypes to explore the seamless
integration of smart phones into our personal environment.

8. ACKNOWLEDGMENTS
Thanks to Martin Hitz, David Mellis, Hannah Perner-Wilson,
Emily Lovell, and all of our workshop participants for their
contributions and conversation. This work was funded in part by
the MIT Media Lab consortium.

9. REFERENCES
[1] Ambient Orb. http://www.ambientdevices.com/

[2] Amft, O. and Lukowicz, P. 2009. From Backpacks to Smart
phones: Past, Present, and Future of Wearable
Computers, IEEE Pervasive Computing, vol. 8, no. 3, pp. 8-
13, July-September, 2009.

[3] Android. http://www.android.com/

[4] Apple. iPhone SDK. http://developer.apple.com/iphone/

[5] Arduino. http://www.arduino.cc

[6] Basic Stamp. http://www.parallax.com/Sharlin, E., Watson,
B., Kitamura, Y., Kishino, F., and Itoh, Y. 2004. On tangible
user interfaces, humans and spatiality. Personal Ubiquitous
Comput. 8, 5 (Sep. 2004), 338-346.

[7] Buechley, L., Eisenberg, M., Catchen, J. and Crockett, A.
2008. The LilyPad Arduino: Using Computational Textiles
to Investigate Engagement, Aesthetics, and Diversity in
Computer Science Education. In Proceedings of the SIGCHI
conference on Human factors in computing systems (CHI),
(Florence, Italy, April 2008), pp. 423-432.

[8] Costanza, E., Inverso, S. A., Pavlov, E., Allen, R., and Maes,
P. 2006. eye-q: eyeglass peripheral display for subtle

intimate notifications. In Proceedings of the 8th Conference
on Human-Computer interaction with Mobile Devices and
Services (Helsinki, Finland, September 12 - 15, 2006).
MobileHCI '06, vol. 159. ACM, New York, NY, 211-218.

[9] Fujiki, Y., Kazakos, K., Puri, C., Buddharaju, P., Pavlidis, I.,
and Levine, J. 2008. NEAT-o-Games: blending physical
activity and fun in the daily routine. Comput. Entertain. 6, 2
(Jul. 2008), 1-22.

[10] Greenberg, S. & Fitchett, C., 2001. Phidgets: easy
development of physical interfaces through physical widgets.
In Proceedings of the ACM symposium on User interface
software and technology (UIST). pp. 209–218.

[11] Hartmann, B. et al., 2006. Reflective physical prototyping
through integrated design, test, and analysis. In Proceedings
of the ACM symposium on user interface software and
technology (UIST). pp. 299–308.

[12] Ishii, H. and Ullmer, B. 1997. Tangible bits: towards
seamless interfaces between people, bits and atoms. In
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Atlanta, Georgia, United States,
March 22 - 27, 1997). S. Pemberton, Ed. CHI '97. ACM,
New York, NY, 234-241.

[13] Kanjo, E., Bacon, J., Roberts, D., and Landshoff, P. 2009.
MobSens: Making Smart Phones Smarter. IEEE Pervasive
Computing 8, 4 (Oct. 2009), 50-57.

[14] Lego Mindstorms. http://mindstorms.lego.com/

[15] Liu, J., Wang, Z., Zhong, L., Wickramasuriya J., and
Vasudevan, V. 2009. uWave: Accelerometer-based
personalized gesture recognition and its applications,
Pervasive Computing and Communications, 2009. PerCom
2009. IEEE International Conference on , vol., no., pp.1-9, 9-
13 March 2009

[16] Shaer, O. and Jacob, R. J. 2009. A specification paradigm for
the design and implementation of tangible user interfaces.
ACM Trans. Comput.-Hum. Interact. 16, 4 (Nov. 2009), 1-
39.

[17] Shaer, O., Leland, N., Calvillo-Gamez, E. H., and Jacob, R.
J. 2004. The TAC paradigm: specifying tangible user
interfaces. Personal Ubiquitous Comput. 8, 5 (Sep. 2004),
359-369.

[18] Weiser, M, The computer for the twenty-first century. Sci.
Am, Sept. 1991, 94-104.

[19] Werner, J., Wettach, R., and Hornecker, E. 2008. United-
pulse: feeling your partner's pulse. In Proceedings of the
10th international Conference on Human Computer
interaction with Mobile Devices and Services (Amsterdam,
The Netherlands, September 02 - 05, 2008). MobileHCI '08.
ACM, New York, NY, 535-538.

[20] Winkler, T., Ide, M., Wolters, C., and Herczeg, M. 2009.
WeWrite: 'on-the-fly' interactive writing on electronic
textiles with mobile phones. In Proceedings of the 8th
international Conference on interaction Design and Children
(Como, Italy, June 03 - 05, 2009). IDC '09. ACM, New
York, NY, 226-229. (Cambridge, United Kingdom, February
16 - 18, 2009). TEI '09. ACM, New York, NY, 323-330.

